
Homework 6

Problem 2: Cosmological Distance Ladder
The Cosmological Distance Ladder is what is used to measure distances

to extremely distant objects by using a series of measurements (“rungs”) that
depend on the measurement before it.

Rung #1: Size of the Earth
The Greek Eratosthenes first used the shadow cast by the sun at two

different points to geometrically determine the size of the earth. The present
day value of the Earth’s radius is R⊕ ≈ 6400 km.

Rung #2: Distance to the Moon
The Greek Aristarchus used the shadow of the Earth during lunar eclipses

(where the moon passes through the Earth’s shadow) to geometrically deter-
mine the distance to the moon in terms of the Earth’s radius. The present
day value of this distance is Dmoon ≈ 60R⊕ ≈ 384, 000 km.

Rung #3: Distance to the Sun
The Greek Aristarchus used the timing differences between the moon’s

1st and 3rd quarter phases to geometrically determine the distance to the
sun in terms of the Earth’s radius. The present day value of this distance is
D� ≈ 390Dmoon ≈ 390 × 60R⊕ ≈ 1.5 × 108 km. The Earth-Sun distance is
defined to be 1 Astronomical Unit: Dsun ≡ 1 AU.

Rung #4: Distance to nearby stars and clusters
This method uses parallax, the apparent change in position of stars as the

Earth orbits around the Sun. The distance D (in parsecs) to a given star or
cluster is given in terms of its parallax angle α (in arcseconds): D = 1/α. A
parsec (“p

¯
arallax arcs

¯
econd”, pc for short) is approximately equal to 206,000

AU ≈ 206, 000 × 390 × 60R⊕ ≈ 4.82 × 109R⊕. This method will measure
distance out to a few hundred pc.

Rung #5: Main Sequence fitting
Sometimes called spectroscopic parallax, this method exploits the colors

of stars to determine their distance. One can plot the colors of stars (of a
single cluster) against their (apparent) magnitude to form the Hertzsprung-
Russel (HR) diagram. If one then plots a second cluster of stars (at a different
distance), the main sequence of stars of the second will be displaced (in
magnitude) from the first. The amount of displacement is related to their
relative distances:

m1 −m2 = −2.5 log
(
I1
I2

)
= −5 log

(
D2

D1

)
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where m, I,D are the apparent magnitudes, intensities and distances to
the two clusters. Knowing the difference in magnitudes, the distance ratio can
be computed. This method will measure distances out to a few kiloparsecs
(a few kpc).

Rung #6: RR Lyrae
RR Lyrae stars are a specific type of variable star that is used as a “s-

tandard candle” (meaning, we presume to know their intrinsic luminosity).
Knowing the (apparent) magnitude (m1) of an RR Lyrae star in a (globular)
cluster, whose distance (D1) is known (from the previous rungs), the distance
D2 to a different RR Lyrae star (of magnitude m2) is given by:

m1 −m2 = −5 log
(
D2

D1

)
This method can be used to measure distances out to approximately 10

kpc.
Rung #7: Cepheids
Cepheids are a class of variable stars (found in open and globular clusters)

also used as a standard candle. Cepheids have an absolute magnitude that is
related to their period of variability (specifically, log(m) ∝ log(P)). Knowing
the period and magnitude m2 of a Cepheid at an unknown distance D2, one
can use the period-magnitude relation to compare to a Cepheid of the same
period (with known magnitude m1 and distance D1):

m1 −m2 = −5 log
(
D2

D1

)
This method can be used to measure distances out to approximately ten

million parsecs (10 Mpc).
Rung #8: Hubble’s Law
Using Cepheids, one can measure distances to other galaxies. Hubble’s

discovery that the recessional velocity of a galaxy (measured by its redshift)
is linearly related to the distance allows one to determine the distance to
further galaxies: V = H0D, where V is the recessional velocity, D is the
distance, and H0 = 100h km s−1 Mpc−1.

This method can be used to measure distances out to approximately 4
Gpc, where a Gpc = 109 pc ≈ 109 × 206, 000 AU ≈ 109 × 206, 000 × 390 ×
60R⊕ ≈ 4.82× 1018R⊕ ≈ 3× 1022 km.

Problem 3.
a) Assistant needs to measure the apparent luminosity (intensity or ap-

parent magnitude) and colour of all the stars in the cluster. Colour can be
measured by using different coloured filtres and comparing two of them (usu-
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ally done with blue (B) and visual (V)). Temperature can be inferred from
this colour difference.

(note: we can plot the intrinsic luminosity ONLY after the distance has
been determined.)

(Another possibility is to take spectra (this takes a longer time) of the stars
and classify them (O B A F G K M). Temperature can be inferred from the
spectral type.)

b) The assistant needs to measure all the stars to establish a good HR dia-
gram. Measuring only one star will not do. We now assume that properties
of globular clusters are similar and thus the overall trend of the HR dia-
gram should be the same for all globular clusters. We compare HR diagram
of Rocky-II with an HR diagram of a cluster whose distance is known, say
Kolb-0. Plot apparent luminosity (I) in the y-axis. Rocky-II and Kolb-0
have the same intrinsic (L) luminosity but due to their distance (d), their
apparent luminosity does not appear to be the same.

IRocky =
L

4 π d 2
Rocky

IKolb =
L

4 π d 2
Kolb

Since L is the same, we can calculate the distance to Rocky-II;

IRocky d
2
Rocky = IKolb d

2
Kolb =⇒ dRocky =

√
IKolb
IRocky

dKolb

Problem 4.
As with all distance ladder problems, we will attempt to determine the

distance to an object by comparing it to a similar, less-distant object. In this
case, we observe a Cephied in galaxy M137 with a period of 10 days. It is well
known that there is a strong relationship between period and luminosity for
Cepheid stars. Thus, if we observe another Cepheid with a period of 10 days,
we can assume it has the same luminosity as the Cephied in M137. We are
given a graph with the period-apparent magnitude relationship for Cepheids
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in the Large Magellenic Cloud (LMC). From this graph, we can see that a
Cepheid in the LMC with a period of 10 days (remember, log(10days) = 1)
has an apparent magnitude of 15. We are also told that the distance to
the LMC is 50kpc. We now have all the information needed to solve this
problem. First, we use the equation for apparent magnitude:

m1 −m2 = −2.5log(
I1

I2

) (1)

Plugging in the appropriate numbers (with M137 and the LMC as objects
1 and 2, respectively, in the equation above) gives:

20− 15 = −2.5log(
IM137

ILMC

) (2)

Subtracting and dividing both sides by -2.5 yields:

−2 = log(
IM137

ILMC

) (3)

Removing the logarithm by making both sides a power of 10 leaves us
with:

10−2 =
IM137

ILMC

(4)

Next, we use the equation for intensity:

I =
L

4πd2
(5)

and plug this into our results from above:

10−2 =

LM137

4πd2
M137

LLMC

4πd2
LMC

(6)

Clearly, the 4π’s in the previous equation cancel. Additionally, we are
assuming that, since the Cepheids in the LMC and M137 have same period,
they also have the same luminosity. That means they cancel as well, leaving
only

10−2 =
d2
LMC

d2
M137

(7)

Isolating dM137 on one side of the equation (since that’s what we’re trying
to determine), we get:

d2
M137 = 102d2

LMC (8)

We know that the distance to the LMC is 500kpc, so we can plug that
number in above and solve to get dM137 = 500kpc.
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